Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1790, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413580

RESUMO

Axon diameter influences the conduction properties of myelinated axons, both directly, and indirectly through effects on myelin. However, we have limited understanding of mechanisms controlling axon diameter growth in the central nervous system, preventing systematic dissection of how manipulating diameter affects myelination and conduction along individual axons. Here we establish zebrafish to study axon diameter. We find that importin 13b is required for axon diameter growth, but does not affect cell body size or axon length. Using neuron-specific ipo13b mutants, we assess how reduced axon diameter affects myelination and conduction, and find no changes to myelin thickness, precision of action potential propagation, or ability to sustain high frequency firing. However, increases in conduction speed that occur along single myelinated axons with development are tightly linked to their growth in diameter. This suggests that axon diameter growth is a major driver of increases in conduction speeds along myelinated axons over time.


Assuntos
Axônios , Peixe-Zebra , Animais , Axônios/fisiologia , Bainha de Mielina/fisiologia , Sistema Nervoso Central , Neurônios
2.
Nature ; 626(8000): 881-890, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297124

RESUMO

The pace of human brain development is highly protracted compared with most other species1-7. The maturation of cortical neurons is particularly slow, taking months to years to develop adult functions3-5. Remarkably, such protracted timing is retained in cortical neurons derived from human pluripotent stem cells (hPSCs) during in vitro differentiation or upon transplantation into the mouse brain4,8,9. Those findings suggest the presence of a cell-intrinsic clock setting the pace of neuronal maturation, although the molecular nature of this clock remains unknown. Here we identify an epigenetic developmental programme that sets the timing of human neuronal maturation. First, we developed a hPSC-based approach to synchronize the birth of cortical neurons in vitro which enabled us to define an atlas of morphological, functional and molecular maturation. We observed a slow unfolding of maturation programmes, limited by the retention of specific epigenetic factors. Loss of function of several of those factors in cortical neurons enables precocious maturation. Transient inhibition of EZH2, EHMT1 and EHMT2 or DOT1L, at progenitor stage primes newly born neurons to rapidly acquire mature properties upon differentiation. Thus our findings reveal that the rate at which human neurons mature is set well before neurogenesis through the establishment of an epigenetic barrier in progenitor cells. Mechanistically, this barrier holds transcriptional maturation programmes in a poised state that is gradually released to ensure the prolonged timeline of human cortical neuron maturation.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Humanas , Células-Tronco Neurais , Neurogênese , Neurônios , Adulto , Animais , Humanos , Camundongos , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , Fatores de Tempo , Transcrição Gênica
3.
Cell ; 184(8): 2084-2102.e19, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33765444

RESUMO

The human brain has undergone rapid expansion since humans diverged from other great apes, but the mechanism of this human-specific enlargement is still unknown. Here, we use cerebral organoids derived from human, gorilla, and chimpanzee cells to study developmental mechanisms driving evolutionary brain expansion. We find that neuroepithelial differentiation is a protracted process in apes, involving a previously unrecognized transition state characterized by a change in cell shape. Furthermore, we show that human organoids are larger due to a delay in this transition, associated with differences in interkinetic nuclear migration and cell cycle length. Comparative RNA sequencing (RNA-seq) reveals differences in expression dynamics of cell morphogenesis factors, including ZEB2, a known epithelial-mesenchymal transition regulator. We show that ZEB2 promotes neuroepithelial transition, and its manipulation and downstream signaling leads to acquisition of nonhuman ape architecture in the human context and vice versa, establishing an important role for neuroepithelial cell shape in human brain expansion.


Assuntos
Evolução Biológica , Encéfalo/citologia , Forma Celular/fisiologia , Animais , Encéfalo/metabolismo , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Transição Epitelial-Mesenquimal/genética , Expressão Gênica , Gorilla gorilla , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Organoides/citologia , Organoides/metabolismo , Pan troglodytes , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo
4.
J Cell Biol ; 219(7)2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32364583

RESUMO

Through a genetic screen in zebrafish, we identified a mutant with disruption to myelin in both the CNS and PNS caused by a mutation in a previously uncharacterized gene, slc12a2b, predicted to encode a Na+, K+, and Cl- (NKCC) cotransporter, NKCC1b. slc12a2b/NKCC1b mutants exhibited a severe and progressive pathology in the PNS, characterized by dysmyelination and swelling of the periaxonal space at the axon-myelin interface. Cell-type-specific loss of slc12a2b/NKCC1b in either neurons or myelinating Schwann cells recapitulated these pathologies. Given that NKCC1 is critical for ion homeostasis, we asked whether the disruption to myelinated axons in slc12a2b/NKCC1b mutants is affected by neuronal activity. Strikingly, we found that blocking neuronal activity completely prevented and could even rescue the pathology in slc12a2b/NKCC1b mutants. Together, our data indicate that NKCC1b is required to maintain neuronal activity-related solute homeostasis at the axon-myelin interface, and the integrity of myelinated axons.


Assuntos
Axônios/metabolismo , Bainha de Mielina/metabolismo , Neurônios/metabolismo , Células de Schwann/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/genética , Proteínas de Peixe-Zebra/genética , Potenciais de Ação , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Axônios/efeitos dos fármacos , Axônios/ultraestrutura , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mutação , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/ultraestrutura , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Sistema Nervoso Periférico/efeitos dos fármacos , Sistema Nervoso Periférico/metabolismo , Sistema Nervoso Periférico/patologia , Células de Schwann/efeitos dos fármacos , Células de Schwann/ultraestrutura , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Bloqueadores dos Canais de Sódio/toxicidade , Membro 2 da Família 12 de Carreador de Soluto/deficiência , Tetrodotoxina/toxicidade , Peixe-Zebra , Proteínas de Peixe-Zebra/deficiência
5.
Artigo em Inglês | MEDLINE | ID: mdl-31767649

RESUMO

The human brain is often described as the most complex organ in our body. Because of the limited accessibility of living brain tissue, human-specific features of neurodevelopment and disease remain largely unknown. The ability of induced pluripotent stem cells to self-organize into 3D brain organoids has revolutionized approaches to studying brain development in vitro. This review will first look at the history of studying neural development in a dish and how organoids came to be. We evaluate the ability of brain organoids to recapitulate key developmental events, focusing on the generation of various regional identities, cytoarchitecture, cell diversity, features of neuronal maturation, and circuit formation. We also consider the limitations of the model and review recent approaches to improve reproducibility and the healthy maturation of brain organoids.


Assuntos
Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Corpos Embrioides/citologia , Neurogênese , Organoides/crescimento & desenvolvimento , Animais , Técnicas de Cultura de Células , Sobrevivência Celular , Biologia do Desenvolvimento , Células-Tronco Embrionárias/citologia , Humanos , Técnicas In Vitro , Células-Tronco Pluripotentes Induzidas/fisiologia , Camundongos , Modelos Animais , Necrose , Reprodutibilidade dos Testes , Transdução de Sinais , Engenharia Tecidual/métodos
6.
Dev Cell ; 51(6): 730-744.e6, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31761670

RESUMO

Selection of the correct targets for myelination and regulation of myelin sheath growth are essential for central nervous system (CNS) formation and function. Through a genetic screen in zebrafish and complementary analyses in mice, we find that loss of oligodendrocyte Neurofascin leads to mistargeting of myelin to cell bodies, without affecting targeting to axons. In addition, loss of Neurofascin reduces CNS myelination by impairing myelin sheath growth. Time-lapse imaging reveals that the distinct myelinating processes of individual oligodendrocytes can engage in target selection and sheath growth at the same time and that Neurofascin concomitantly regulates targeting and growth. Disruption to Caspr, the neuronal binding partner of oligodendrocyte Neurofascin, also impairs myelin sheath growth, likely reflecting its association in an adhesion complex at the axon-glial interface with Neurofascin. Caspr does not, however, affect myelin targeting, further indicating that Neurofascin independently regulates distinct aspects of CNS myelination by individual oligodendrocytes in vivo.


Assuntos
Sistema Nervoso Central/citologia , Bainha de Mielina/metabolismo , Neurônios/metabolismo , Oligodendroglia/citologia , Animais , Axônios/metabolismo , Corpo Celular/metabolismo , Fatores de Crescimento Neural/metabolismo , Neurogênese/fisiologia , Neuroglia/metabolismo , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...